
CS 112, A Section Only.
MidtermExam1

65 minutes
Instructor: A.Attarwala

Boston University

Enter your First Name:

Enter your Last Name:

Enter your Student#:

Question: 1 2 3 Total

Points: 21 12 9 42

Score:

• This is a closed book exam

• No questions, will be taken during the exam. If you have a doubt, state your assumptions and continue
writing the exam.

• You will receive a 0.25 bonus mark in total, if you write your first name and your last name and your
BU ID on every single page, top right, (front and behind). The maximum you can receive on this
exam, including the bonus points is 100%. At no point, your mark will exceed more than 100%.

• Allocate your time wisely. Do not spend too much time on any single question. You
may want to spend 20 minutes roughly per question.

Page 1 of 13

ONLY TURN THIS PAGE WHEN YOU ARE ASKED TO DO
SO. You can use this page as extra sheet if you so require. If
you use this page, to write your solution, clearly tell us for which
question is this solution for.

Page 2 of 13

ONLY TURN THIS PAGE WHEN YOU ARE ASKED TO DO
SO. You can use this page as extra sheet if you so require. If
you use this page, to write your solution, clearly tell us for which
question is this solution for.

Page 3 of 13

1. We are providing you with a function called mysterySort. This function is identical to what I coded
up in lecture for one of the sorting algorithms. The number at the start of each line represents the line
number. The mysterySort function has a total of 17 lines of code. You can safely assume that the
code compiles and runs fine. Study the code carefully, before answering the following sub questions:

1 public static void mysterySort(int[] items) {
2 int t = 1;
3 while (t < items.length) {
4 int item = items[t];
5 int k = t - 1;
6 while (k >= 0) {
7 if (items[k] > item) {
8 items[k + 1] = items[k];
9 } else

10 break;
11 k--;
12 }
13 items[k + 1] = item;
14 t++;
15 System.out.println("DEBUG " + Arrays.toString(items));
16 }
17 }

(a) (1)What sorting algorithm is represented by mysterySort? Hint: It is either bubble sort,
or insertion sort or selection sort.

(b) (2)Provide any two examples of local variables inside the function mysterySort. If there are none,
simply state none. Provide a one sentence explanation to support your answer.

(c) (1)Provide any example of local reference inside the function mysterySort. If there are none,
simply state none. Provide a one sentence explanation to support your answer.

(d) (1)Provide any example of instance variable inside the function mysterySort. If there are none,
simply state none. Provide a one sentence explanation to support your answer.

Page 4 of 13

Abbas Attarwala
insertion sort

Abbas Attarwala
t and item

Abbas Attarwala
items

Abbas Attarwala
None

(e) Now assume that the mysterySort is called by passing in the array [1, 2, 3, 4, 5, 6, 7, 8, 9] as input.
This array is of length 9 and is already sorted in ascending order.

i. (3)You are now asked to trace the mysterySort. What does the function mysterySort print
for the above input array? This question is simply asking you to provide what is printed on the
screen (i.e. line #15 of the mysterySort function) for the above input array. You can use
any blank pages of the exam for tracing and rough work, however, you must in the space
provided below clearly tell us the exact output for each time line #15 is executed.1

ii. (3)Again for any input array that is already sorted in ascending order, and n represents the length
of the array, how many times does the inner loop execute? If there are multiple correct answers,
make sure to select them all.

©
n−1∑
j=0

99∑
i=0

i−1∑
k=0

1

©
n−1∑
t=1

t−1∑
k=t−1

1

©
n−1∑
t=1

1

©
n−1∑
t=1

t−1∑
k=0

1

©
n−1∑
t=1

t

© None of the above

iii. (1)What is the BigOh i.e. O(...) of the mysterySort when the input array is sorted in ascending
order? n represents the length of the array.

© O(1)

© O(n)

© O(n2)

© O(log2n)

© None of the above

1Here is how Arrays.toString works:
int[] items={1,2,3,4,5};
System.out.println("The items of the array are "+Arrays.toString(items));
The output of the above println on the screen is:
The items of the array are [1, 2, 3, 4, 5]

Page 5 of 13

Abbas Attarwala
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
8�

Abbas Attarwala

Abbas Attarwala

Abbas Attarwala

(f) Now assume that the mysterySort is called by passing in the array [9, 8, 7, 6, 5, 4, 3, 2, 1] as input.
This array is of length 9 and is already sorted in descending order.

i. (5)You are now asked to trace the mysterySort. What does the function mysterySort print
for the above input array? This question is simply asking you to provide what is printed on the
screen (i.e. line #15 of the mysterySort function) for the above input array. You can use
any blank pages of the exam for tracing and rough work, however, you must in the space
provided below clearly tell us the exact output for each time line #15 is executed..2

ii. (3)Again for any input array that is already in descending order, and n represents the length of
the array, how many times does the inner loop execute? If there are multiple correct answers,
make sure to select them all.

©
n−1∑
j=0

99∑
i=0

i−1∑
k=0

1

©
n−1∑
t=1

t−1∑
k=t−1

1

©
n−1∑
t=1

1

©
n−1∑
t=1

t−1∑
k=0

1

©
n−1∑
t=1

t

© None of the above

iii. (1)What is the BigOh i.e. O(...) of the mysterySort when the input array is sorted in descending
order? n represents the length of the array.

© O(1)

© O(n)

© O(n2)

© O(log2n)

© None of the above

Total for Question 1: 21

2Here is how Arrays.toString works:
int[] items={1,2,3,4,5};
System.out.println("The items of the array are "+Arrays.toString(items));
The output of the above println on the screen is:
The items of the array are [1, 2, 3, 4, 5]

Page 6 of 13

Abbas Attarwala

Abbas Attarwala

Abbas Attarwala

Abbas Attarwala
DEBUG [8, 9, 7, 6, 5, 4, 3, 2, 1]
DEBUG [7, 8, 9, 6, 5, 4, 3, 2, 1]
DEBUG [6, 7, 8, 9, 5, 4, 3, 2, 1]
DEBUG [5, 6, 7, 8, 9, 4, 3, 2, 1]
DEBUG [4, 5, 6, 7, 8, 9, 3, 2, 1]
DEBUG [3, 4, 5, 6, 7, 8, 9, 2, 1]
DEBUG [2, 3, 4, 5, 6, 7, 8, 9, 1]
DEBUG [1, 2, 3, 4, 5, 6, 7, 8, 9]
36�

2. In the very first lecture of this term, I coded up BinarySearch. Here is the exact code from the lecture
provided to you. Make sure to study the code very carefully:

1 public static boolean performBinarySearch(int[] array,int targetValue)
2 {
3 int rightIndex=array.length-1;
4 int leftIndex=0;
5 while(leftIndex<=rightIndex)
6 {
7 int middleIndex=(rightIndex+leftIndex)/2;
8 if (array[middleIndex]==targetValue)
9 return true;

10 else if (array[middleIndex]<targetValue)
11 leftIndex=middleIndex+1;
12 else
13 rightIndex=middleIndex-1;
14 }
15 return false;
16

17 }

(a) (2)What is the BigOh i.e. O(...) of the performBinarySearch in the worst case? n represents the
length of the array. The best case for binary search is when the element that you are searching
for is in the middle.

© O(1)

© O(n)

© O(n2)

© O(log2n)

© None of the above

(b) (5)You are now asked to modify the binary search algorithm in performBinarySearch slightly.
You are now given the task to find the first occurrence index of targetValue in array us-
ing binary search that may also contain duplicates. You will return an index in range [0, n− 1]
if targetValue belongs to array or −1 if targetValue doesn’t belong to array. Here are some
examples:

int[] items={1,2,3,4,5,6,9,9,9,9};
System.out.println(SortingAlgorithms.findFirstOccurance(items,9)); //must print 6

int[] items1={3,3,3,3,3,3,3,4,5,6};
System.out.println(SortingAlgorithms.findFirstOccurance(items1,3)); //must print 0

We have provided some starter code in the function findFirstOccurance and ask you to com-
plete the rest that are denoted by the TODO comments. Please refer to the starter code on the next
page.

Page 7 of 13

Abbas Attarwala

public static int findFirstOccurance(int[] array,int targetValue)
{

int ans = -1;
int leftIndex=0;
int rightIndex=array.length-1;

//TODO: Complete the condition of the while statement
while () {

int mid = leftIndex + (rightIndex - leftIndex + 1) / 2;
int midVal = array[mid];
if (midVal < targetValue) {

//TODO: Complete this block (Approx: 1-2 lines of code)

}
else if (midVal > targetValue) {

//TODO: Complete this block (Approx: 1-2 lines of code)

}
else
{

//TODO: Complete this block (Approx: 1-2 lines of code)

}
}

//TODO: make sure to provide any return statements
//(Approx: 1-2 lines of code)

}

Page 8 of 13

(c) (5)You are now asked to modify the binary search algorithm in performBinarySearch slightly.
You are now given the task to find the last occurrence index of targetValue in array us-
ing binary search that may also contain duplicates. You will return an index in range [0, n− 1]
if targetValue belongs to array or −1 if targetValue doesn’t belong to array.

Here are some examples:

int[] items={1,2,3,4,5,6,9,9,9,9};
System.out.println(SortingAlgorithms.findLastOccurance(items,9)); //must print 9

int[] items1={3,3,3,3,3,3,3,4,5,6};
System.out.println(SortingAlgorithms.findLastOccurance(items1,3)); //must print 6

We have provided some starter code in the function findLastOccurance and ask you to complete
the rest that are denoted by the TODO comments. Please refer to the starter code on the next page.

Page 9 of 13

public static int findLastOccurance(int[] array,int targetValue)
{

int ans = -1;
int leftIndex=0;
int rightIndex=array.length-1;

//TODO: Complete the condition of the while statement
while () {

int mid = leftIndex + (rightIndex - leftIndex + 1) / 2;
int midVal = array[mid];
if (midVal < targetValue) {

//TODO: Complete this block (Approx: 1-2 lines of code)

}
else if (midVal > targetValue) {

//TODO: Complete this block (Approx: 1-2 lines of code)

}
else
{

//TODO: Complete this block (Approx: 1-2 lines of code)

}
}

//TODO: make sure to provide any return statements
//(Approx: 1-2 lines of code)

}

Total for Question 2: 12

Page 10 of 13

3. Java Memory Model
Draw two separate Java memory model for the following two subparts. I want you to draw what the
stack and the heap looks like after line #8 has been executed. DO NOT SHOW ME HOW THE
STACK AND THE HEAP CHANGES FROM LINE#4 TO LINE#8. JUST SHOW ME THE FINAL
PICTURE AFTER LINE #8 HAS BEEN EXECUTED. You can assume that line #9 has not been
executed. (Hint: int is a primitive type AND Integer is an object. All objects go on the heap and
all local variables go on the appropriate stack frame).

(a) (5)3

1 class JavaMemoryModel {
2 public static void main(String[] args)
3 {
4 String s = new String("Wombat");
5 Integer i = new Integer(27);
6 Integer j = new Integer(29);
7 Integer k = new Integer(31);
8 Integer[] v={i,j,k};
9 String x="Do not draw the memory model from this line onwards";
10 }
11 }

3Make sure that inside the stack region of the memory diagram, the only stack frame on the stack is the main stack frame.

Page 11 of 13

(b) (4)4

1 class JavaMemoryModel {
2 public static void main(String[] args)
3 {
4 String s = new String("Wombat");
5 int i = 27;
6 int j = 29;
7 int k = 31;
8 int[] v={i,j,k};
9 String x="Do not draw the memory model from this line onwards";
10 }
11 }

Total for Question 3: 9

4Make sure that inside the stack region of the memory diagram, the only stack frame on the stack is the main stack frame.

Page 12 of 13

Extra Sheet: If you use this page, to write your solution, clearly
tell us for which question is this solution for.

Page 13 of 13

